Study and Investigation of Transition Rate at Metal–Organic Semiconductor Interfaces

Authors

  • Hadi J. M. Al-Agealy, Hind A. Mahdi, Ebtisam M. T. Salman

Abstract

In this paper,we focus on the investigated and studied of transition rate in metal/organic semiconductor interface due to quantum postulate and continuum transition theory. A theoretical  model has been used to estimate  the transition rate cross the interface through estimation many parameters such that ;transition energy  ,driving electronic energy U(eV) ,Potential barrier ,electronic coupling  ,semiconductor volume ,density ,metal work function ,electronic affinity and temperature T. The transition energy  is critical facter of charge transfer through the interfaces of metal organic ?lms device and itscontrol of charge injection and transport cross interface. However,the potential at interface is dependents on the physical properties of two materials and indicate to the nature of electron transport through system. We can demonstrate barrier height variations as a function of work function and electron affinity of a metal and semiconductor respectively. The flow charges of transfer indicate to the electrical properties of metallic-organic semiconductor devices and this model make us to election the material to use in the electronic devices. 

Published

2020-10-16

Issue

Section

Articles